What Makes a Good Molecular-Scale Computer Device?

نویسندگان

  • Seth Copen Goldstein
  • Dan Rosewater
چکیده

The lithographically-produced CMOS transistor has been the key technology that has enabled the information revolution. However, in the near future the limitations, both technical and economic, introduced by lithographic fabrication may inhibit further decreases in feature size. Chemically assembled electronic nanotechnology (CAEN) is a promising alternative to CMOS for constructing circuits with device sizes in the tens of nanometers, far smaller than is thought possible using lithography. In this paper we examine and contrast the constraints imposed by lithographic versus CAEN fabrication; the key limitation is that three-terminal devices, such as transistors, will be impractical at the nanoscale. We demonstrate that these constraints can be satisfied by outlining an architecture that uses only two-terminal CAEN devices to compute without transistors. One crucial requirement of this design circuit is that it be able to restore signals to a reference state without transistors. We present preliminary results for a molecular latch, constructed from molecular resonant tunneling diodes (RTDs) that can perform signal restoration, I/O isolation, and voltage buffering without transistors at the nanoscale. This work was supported in part by DARPA constract N000140110659.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

"What We Feel, and What Doth us Befall": A Study of Letter Motif in Macbeth 

The present essay is an attempt to scrutinize Macbeth's letter to Lady Macbeth formalistically with much care and seek hints which may lead us back and forth to understand what befell before and after the composition and emission of the letter. The letter seems to help us plunge into Macbeth's consciousness, and of course later to that of Lady Macbeth; it is a transparent aid to perceive the hi...

متن کامل

Biosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles

Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...

متن کامل

Simulation of IR Detector at Communication Window of 1550nm based on Graphene

In this paper, photodetection properties of a Graphene-based device at the third telecommunication window have been reported. The structure of the device is a Graphene-silicon Schottky junction which has been simulated in the form of an infrared photodetector. Graphene has specific electrical and optical properties which makes this material a good candidate for optoelectronic applications. Phot...

متن کامل

Designing a Process Flowsheet

The appearance and form of piping and instrumentation diagrams (P&IDs) have changed little over time, despite decades of technology improvements. A P&ID created 60 years ago on the drawing board, using ink pens on linen sheets, describes a process the same way as one created today using modern computer-aided design (CAD) software. P&IDs continue to be fundamental references for any process faci...

متن کامل

Optimization of Quantum Cellular Automata Circuits by Genetic Algorithm

Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic devic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002